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Let us set: 

O M =  ]/NW , 

MC: vector normal to the plane (Vx, V2). 

By Pythagoras's theorem, we have" 

2__ X~m - lOCi 2= NIWI: - l /CI  2= N - I i C I  2. 

By elementary geometry and equation (3) we have" 

IM-+CI2= (volume of (V1,VE, I/NW) ~2=N A3 (B.7) 
surface of(Vb V2) ] Dz " 

By a straightforward generalization, we have: 

Am+l (B 7a) 
[MCIZ=N D----~" 

Therefore" 

dm+l Dm-Am+l = N - N  -N- IMCIE=X2m.  
Qm=N Om Om 

We conclude: 
Qm= X 2 m (B.8) 

is the square of the modulus of the projection of W 
upon the 'sub-space' (V1 . . .  Vm). 

(D) Proof of  inequality (15a) 
Clearly 

. . . +  

IMC[2_< NIWI2 = N .  

Therefore, from (B. 7a), we obtain 

Am+l _<1. (B.9) 
Dm 

The essentials of these papers were worked out 
during a stay at the Center for Crystallographic Re- 
search in Buffalo, N.Y. 

The author wishes to express his deep gratitude to 
Professor David Harker for his suggestions which 
inspired much of these papers. Likewise, the author 
feels indebted to Professor Curien, Scientific Director 
of the Centre National de la Recherche Scientifique, 
for his active interest and constructive criticism. 
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A new set of relations between structure factors corresponding to an isomorphous pair is established: 
inequalities, convolution equations, probabilities. These relations may enhance the power of direct 
methods for the determination of phases. 

The aim of this paper is to establish relations between 
structure factors belonging to pairs of isomorphous 
crystals. The theory can be applied also to a set of dif- 

fraction data obtained for the same crystal by X-ray 
and neutron diffraction respectively. These relations 
can be considered as the extension to isomorphous 
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pairs of the so-called direct methods for solving crystal 
structures: inequalities, Sayre's equation, theory of 
probability. 

1. Inequalities 

The unitary structure factors for an isomorphous pair 
will be denoted by: 

N 
Ua = Z n~ exp (2niH. r~), (1) 

j = l  

N 
U~I = Y~ n} exp (2gill .  0),  (la) 

]=1  

with Xn~= Xn;= l  , (2) 
) ] 

where n' is a complex or a real number, 
n is a real, strictly positive number, 
N is the number of atoms in the unit cell. 

(a) Inequalities arising from Cauchy' s inequality 
These inequalities are an extension of the Harker & 

Kasper (1948) inequalities. We recall first the Cauchy's 
inequality (3) verified by any pair of sets of complex 
numbers aj and bt ( j=  1, . . .  n): 

12-< [ 1[ 
We now consider a centrosymmetrical isomorphous 
pair; the unitary structure factors are given by" 

N 

Un = X n~ cos (2nH. r~), (4) 
j--1 

N 
g~ = Y. nj cos (2nil .  rj). (4a) 

j = l  

Let us apply Cauchy's inequality by setting: 

aj=n;/n~ bj=n~ cos (2r~H. rj). (5) 

W e - o b t a i n "  

i~  r.'/..t/2~.l/2 (2~zH. r~) 2 k " i l ' " i  /'~l COS 
J 

<- [ ~ ]njlZ/nj] [ ~nt  cos 2 2zcH. r/] 

o r  

2 (1 +cos 4ni l .  r j)  

with 

InjlZ (6) 
A =  ~ n~ " 

By using (1), we obtain finally: 

I U;~IZ < A(½ + ½U2n) . (7) 

This inequality enables one to obtain information about 
the phase of Uzn by using the knowledge of the modulus 
of U~. By following the same reasoning we obtain 
similar inequalities for different space groups. For 
example, in space group P21, by setting: 

n~ 
aj= ~ exp (2rcikyj), 

bj = ny = {exp [2ni(hx~ + lz~)] 
+ ( -  1) ~ exp [-2rci(hxj+lzt)l} 

we obtain: 
I Vh;,,I 2 <_ A(½ + ½(-- 1)e U2n.0.n) • (8) 

(b) Determinants associated with isomorphous pairs 

The inequalities of § (a) may be derived from more 
general inequalities involving determinants, in the same 
way as the Harker-Kasper inequalities may be derived 
from Karle-Hauptman determinants. In order to 
establish these inequalities, we use the N-dimensional 
Hilbert space, described by Kitaigorodski (1961).* 
However, the ruth vector is now defined differently, as 
follows: 

p < m -  1: Vv= ~[nl/2 exp (2ziHv. rj)]ej; (9) 
J 

p=m: W = V m =  ~.i [-~lfif exp (2rHHra . r,) ] e, . (10) 

We then form the scalar products: 

(Va0. Vq)= ~ n~ exp [2ni(H~o- Hq). rj]= Uvq 
J 

p,q= l. . . m - 1  

(Vv. Vv) = ~ n~= 1 
J 

(Vv. W) = E nj exp [2r~i(Hv- Hm). rjl = U;m 
1 

p = l , . . . m - 1  

(W. W)=A (A is given by equation 6). 

With these scalar products we construct the following 
determinant of order m denoted by Im (I for 'isomor- 
phous pair'). 

! UI1 U12 . . .  Ulm 
Ira= IU2, U22 . . .  U~zs >0.  

! . . , .  . . . .  , , , . . . . . . ,  . . . . . . . . .  

I . . .  A 

Ira is a Gram determinant; therefore: 

for m> N+ 1 Ira=O, 
for m<_N Im>_O. 

Remark 
If both nj and n) are positive, the role of Un and Ux~ 

can be inverted in all equations derived in this paper. 

2. Algebraic equations 

By generalization of the reasoning which leads to the 
Sayre's (1952) equation, we obtain a similar relation for 
isomorphous pairs; in this paper we will use the form 
given by Hughes (1953). We introduce the normalized 
structure factor E H defined by 

* Also Tsoucaris (1970). 
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Eri = ~ gJ exp (2z~iH. re), (12) 
j= l  

N N 
g~ = ~ gj2 = 1, IEHI 2(n) _ lEVI 2 (n) = 1. 

j= l  j=l 

The gfs are related to the nfs orJ~'s (atomic scattering 
factors) by: 

nj 3~ 
gJ= (~. n~)1/2 - (~f~),/2 

j J 
and the horizontal bar means 'average value of the 
expression underneath' when H sweeps all reciprocal 
space. 

By multiplying E K and E n - r ,  and averaging over 
K (H being kept constant) we obtain: 

N 
EK EH_K (K) = ~,, gjgj e x p  ( 2 n i H .  rj)=Gn • (13) 

j= l  

G n is the Fourier coefficient corresponding to the 
product of the electron densities ~(r) and Q'(r). 

In the general case, GH is not simply related to EH 
or Ex~ ; in the same way, the expression 

- - ( K )  
Erc EH-K 

is not simply related to E a unless all atoms are equal. 
In our problem, if all atoms in o(r) [not necessarily 

in o'(r)] are equal, we have: 

GH =N-I/2EH = Ex EH-X 0~) (14) 

Equation (14) suggests that the relationship (in the 
centrosymmetrical case)" 

E ' H E  K E~_ K ~ positive (15) 

is likely to be true even if it is not strictly required by 
the inequalities. To answer in a quantitative way the 
question 'How probable is it that (15) holds?' the theory 
of probability is used. 

3. Statistical relations 

By using the mathematical apparatus described in the 
paper by Tsoucaris (1970), we obtain the following ap- 
proximate expression for the probability P+ that (15) 
holds: 

1 1 1 IE~E rE_a_KI ] .  (16) P+ = ~ + ~ tanh [ 

Equation (16) is still approximately true for the general 
case where the atoms in Q(r) are unequal (see Cochran 
& Woolfson, 1955). 
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Sesquioxyde de Plomb, Pb203. I. D6termination de la Structure 

PAR J. BOUVAIST ET D. WEIGEL 

Laboratoire de Chimie Gdndrale B, Facultd des Sciences, Rennes, France 

(Rec.u le 23 juin 1969) 

The structure proposed for lead sesquioxide by Bystr/Sm (1947) is incorrect. The space group found 
in the present work is P21/a with four Pb203 in the unit cell; the unit-cell dimensions are" a=7.814, 
b = 5.625, c = 8"466/1, (all + 0.003/~); B = 124°48'+ 5'. The structure has been determined by means of 
X-ray and neutron-diffraction powder data, and refined by a full-matrix least-squares method. The 
pb4÷ ions are surrounded by six oxygen atoms forming deformed octahedra, with an average Pb-O 
distance of 2.18 A. These octahedra share edges and corners to form a two-dimensional framework 
parallel to (001). These layers are interconnected by pb2+ ions having sixfold coordination, with Pb-O 
separations ranging from 2-30 to 3.00/~. The three shortest distances PbZ+-O 2- give rise to a Pb 2÷ 
coordination reminiscent of the threefold coordination of pba÷ in Pb304. 

Introduction 

Le sesquioxyde de plomb, Pb203, fut pr6par6 pour la 
premiere fois par Clark, Schieltz & Quirke (1937) par 
synth~se hydrothermale. Gross (1941) proposa pour 
ce compos6 une maille monoclinique ayant pour para- 
m~tres: a=7,03, b=5,62, c=3,93 /~ et f l=82 ° avec 
Z = 2  et P21/m ou P21 comme groupe spatial. Bystr~Sm 

(1944) adopte les hypotheses de Gross et propose une 
structure dans laquelle les atomes de plomb occupent 
deux positions 2(e) du groupe spatial P21/m; l 'atome 
d'oxyg~ne ayant un facteur de diffusion trop faible par 
rapport ~t celui de l 'atome de plomb, il lui est impos- 
sible de d6terminer les positions des atomes d'oxyg~ne, 
par comparaison des intensit6s calcul6es et observ6es; 
il propose cependant des positions en tenant compte 


